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Metric Space and Partial Metric Space
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Abstract. In this paper we establish that a pair of compatible mappings have unique common fixed point
in metric and partial metric spaces respectively. The mappings are Suzuki type. We give examples to
illustrate our results.

1. Introduction

Meir-Keeler[19] made a new type generalizations of Banach contraction principle[5] in 1969.The Banach
contraction principle[5] plays an important role in fixed point theory. Fixed point theory is an important
and powerful tool to study the phenomenon of nonlinear analysis. Banach contraction principle has many
generalizations in various branches of mathematics. Some of these generalization in metric spaces are in
[1, 6–9, 16, 19, 20, 30].
Partial metric spaces are spaces where we have the concept of non-zero self distances. The motivation
behind this concept was to obtain a modified version of Banach contraction principle, more generally to
solve certain problems arising in computer science. The need for such study arose in computer science
where a metric approach to certain problems of denotational semantics[31] can be modified to incorporate
non-zero self-distances. Elementary fixed point results having important implications in computer sciences
was proved in the introductory papers[17, 18]. After that a number of papers on fixed points have appeared,
some references being [2–4, 11, 13, 21, 26, 32].
Recently, Suzuki [19] proved two fixed point theorems, one of which is a new type of generalization of the
Banach contraction principle and does characterize the metric completeness. The Banach contraction does
not have this property. Another one is a generalization of Meir-Keeler’s result. The work of Suzuki[28]
also provides with a new methodology of proof which has been followed afterwards in a number of papers
[14, 15, 22, 23, 29, 33]. There are also direct generalization of this result in works like [24].
The concept of compatible mappings was introduced by Jungck[12] as a generalization of commuting
mappings. The utility of compatibility in the context of fixed point theory was demonstrated by extending
a theorem of Park-Bae [25]. Recently Samet et al[27] introduced a definition of compatible pair of mappings
in partial metric spaces.
In this paper we prove that two compatible mapping have unique common fixed point in metric and partial
metric spaces respectively. The result is supported with examples. In the corresponding metric spaces, the
result generalizes a theorem of[23].
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2. Preliminaries

Definition 2.1. [17] Let X be a nonempty set and let p : X × X → R+ be such that the following are satisfied. For
all x, y, z ∈ X,
(P1) x = y⇔ p(x, x) = p(y, y) = p(x, y);
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).
Then the pair (X, p) is called a partial metric space and p is called a partial metric on X.

It is clear that if p(x, y) = 0, then from (P1) and (P2), x = y. But if x = y, p(x, y) may not be 0. If p be a partial
metric on X, then the function dp : X × X→ R+ defined as

dp(x, y) = 2p(x, y) − p(x, x) − p(y, y)

satisfies the conditions of an usual metric on X. Each partial metric p on X generates a T0 topology τp on X,
whose base is a family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}where

Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x) + ε}, for all x ∈ X and ε > 0.
The concepts of convergence, Cauchy sequence, completeness and continuity in partial metric space are
given in the following definition.

Definition 2.2. [17] Let (X, p) be a partial metric space.
(1) A sequence {xn} in the partial metric space (X, p) converges to the limit x if and only if p(x, x) = limn→∞ p(x, xn).
(2) A sequence{xn} in the partial metric space (X, p) is called a Cauchy sequence
if limm,n→∞ p(xm, xn) exists and is finite.
(3)A partial metric space (X, p) is called complete if every Cauchy sequence {xn} in X converges with respect to τp to
a point x ∈ X such that p(x, x) = limm,n→∞ p(xm, xn).
(4) A mapping f : X → X is said to be continuous at x0 ∈ X if for every ε > 0, there exists δ > 0 such that
f (Bp(x0, δ)) ⊆ Bp( f (x0), ε).

The definition of continuity described above is equivalent to the following statement.
A function f : X → X, where (X, p) is a partial metric space, is continuous if and only if f (xn) → f (x)
whenever xn → x as n→∞.

Lemma 2.3. [17] Let (X, p) be a partial metric space.
(1) A sequence {xn} is a Cauchy sequence in the partial metric space (X, p) if and only if it is a Cauchy sequence in the
metric space (X, dp).
(2) A partial metric space (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover limn→∞ dp(x, xn) =
0 if and only if p(x, x) = limn→∞ p(x, xn) = limm,n→∞ p(xm, xn).

Definition 2.4. [11] A sequence {xn} in a partial metric space (X, p) is called 0-Cauchy if
lim

n, m→∞
p(xn, xm) = 0. We say that (X, p) is 0-complete if each 0-Cauchy sequence in X converges to a point x ∈ X

such that p(x, x) = 0.

Note that, each 0-Cauchy sequence in (X, p) is Cauchy in (X, dp) and every complete partial metric space is
0-complete.

Proposition 2.5. [10] Let (X, p) be a partial metric space. Then the function d : X × X −→ [0, ∞) defined by
d(x, y) = 0 whenever x = y and d(x, y) = p(x, y) whenever x , y, is a metric on X such that τdp ⊆ τd. Moreover,
(X, d) is complete if and only if (X, p) is 0-complete.
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Theorem 2.6. [28] Define a function θ from [0, 1) onto ( 1
2 , 1] by

θ(r) =


1, if 0 ≤ r ≤ (

√
5−1)
2 ;

1−r
r2 , if (

√
5−1)
2 ≤ r ≤ 2−

1
2 ;

1
1+r , if 1

√
2
≤ r < 1.

Let (X, d) be a complete metric space. T is a mapping on X. If T satisfy the following

θ(r)d(x,Tx) ≤ d(x, y)⇒ d(Tx,Ty) ≤ rd(x, y) for all x, y ∈ X,

then T has a fixed point.

Definition 2.7. [12] Let S and T be mappings from a metric space(X, d) into itself. Then S and T are said to be
compatible if limn→∞d(STxn,TSxn) = 0 whenever {xn} is a sequence in X such that limn→∞Sxn = limn→∞Txn = z
for some z in X. Thus, if d(STxn,TSxn)→ 0 as d(Sxn,Txn)→ o, then S and T are compatible.

Definition 2.8. [27] Let (X, p) be a partial metric space and F, 1 : X→ X are mappings of X into itself. We say that
the pair {F, 1} is partial compatible if the following conditions hold:
(b1) p(x, x) = 0⇒ p(1x, 1x) = 0;
(b2) limn→∞ p(F1xn, 1Fxn) = 0, whenever {xn} is a sequence in X such that Fxn → t
and 1xn → t for some t ∈ X.

3. Main Result

Result in metric space

Theorem 3.1. Let (X, d) be a complete metric space. Let S be a continuous mappings on X and T be another mapping
on X such that {T,S} is compatible and T(X) ⊂ S(X). Also let for all x, y ∈ X and for any ε > 0 there exist δ(ε) > 0
such that

(i)
1
2

d(Sx,Tx) < d(Sx,Sy)⇒ d(Tx,Ty) < max{d(Sx,Sy),
1
2

(d(Sx,Tx) + d(Sy,Ty))}; (1)

(ii)
1
2

d(Sx,Tx) < d(Sx,Sy) and max{d(Sx,Sy),
1
2

(d(Sx,Tx) + d(Sy,Ty))} < ε + δ(ε)

⇒ d(Tx,Ty) ≤ ε. (2)

Then there exists a unique common fixed point of S and T.

Proof. Since T(X) ⊂ S(X), therefore for any x ∈ X there exists y ∈ X such that Tx = Sy.
So we can define a mapping I on X satisfying SIx = Tx for all x ∈ X. Thus it is clear that,

Ix

= x, if Sx = Tx;
, x, if Sx , Tx.

For x ∈ X with Sx , Tx, we have

d(Sx,Tx) < 2d(Sx,Tx) = 2d(Sx,SIx).

It follows from (1) that

d(Tx,TIx) < max{d(Sx,SIx),
1
2

(d(Sx,Tx) + d(SIx,TIx))}

≤ max{d(Sx,Tx), d(Tx,TIx)}



B. S. Choudhury, C. Bandyopadhyay / Filomat 29:6 (2015), 1377–1387 1380

therefore,

d(SIx,SIIx) < d(Sx,SIx) (3)

for all x ∈ X with Sx , SIx.
For x ∈ X with Sx = Tx, we have Ix = x, so

d(SIx,SIIx) ≤ d(Sx,SIx) for all x ∈ X. (4)

Let u ∈ X. Put u0 = u and un = Inu for all n ∈ N. By (4), {d(Sun,Sun+1)} is a real decreasing sequence of
positive terms and hence converges to some α ≥ 0. Suppose α > 0, then by (3), {d(Sun,Sun+1)} is strictly
decreasing and hence d(Sun,Sun+1) > α for all n ∈ N.
Take j ∈ Nwith d(Su j,Su j+1) < α + δ(α).
Since

max{d(Su j,Su j+1),
1
2

(d(Su j,Tu j)) + d(Su j+1,Tu j+1)}

= max{d(Su j,Su j+1),
1
2

(d(Su j,Su j+1)) + d(Su j+1,Su j+2)}

= d(Su j,Su j+1)

it follows by (2) that d(Tu j,Tu j+1) = d(Su j+1,Su j+2) ≤ α. This is a contradiction. Therefore α = 0.
So,

lim
n→∞

d(Sun,Sun+1) = 0. (5)

Fix ε > 0 and put δ1 = min{ε, δ(ε)}. By (5) we can choose ν1 ∈ N such that

d(Sun,Sun+1) < δ1 for all n ≥ ν1.

Fix l ∈ Nwith l ≥ ν1.
We shall show, by induction, that

d(Sul,Sul+m) < ε + δ1 (6)

for all m ∈ N.
If m = 1, (6) is obvious. Suppose that d(Sul,Sul+m) < ε + δ1 holds for some m ∈ N.
When d(Sul,Sul+m) ≤ ε we have,

p(Sul,Sul+m+1) ≤ d(Sul,Sul+m) + d(Sul+m,Sul+m+1)
< ε + δ1.

In the other case, when ε < d(Sul,Sul+m) < ε + δ1, we have

d(Sul,Tul) = d(Sul,Sul+1) < δ1 ≤ ε < d(Sul,Sul+m) ≤ 2d(Sul,Sul+m).

Therefore, 1
2 d(Sul,Tul) ≤ d(Sul,Sul+m).

Moreover,

max{d(Sul,Sul+m),
1
2

(d(Sul,Sul+1) + d(Sul+m,Sul+m+1))} < max{ε + δ1,
δ1 + δ1

2
}

= ε + δ1

≤ ε + δ(ε).
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By (2) we obtain

d(Sul+1,Sul+m+1) = d(Tul,Tul+m) ≤ ε

Hence,

d(Sul,Sul+m+1) ≤ d(Sul,Sul+1) + d(Sul+1,Sul+m+1)
≤ ε + δ1

so by induction (6) holds for all m ∈ N.
Since ε is arbitrary, we have

lim sup
n→∞, m>n

d(Sum,Sun) < ∞.

Therefore {Sun} is a Cauchy sequence in (X, d). Since (X, d) is complete there exist z ∈ X such that

Sun → z. So Tun = Sun+1 → z. (7)

Next we show that z is a fixed point of S. Arguing by contradiction, we assume that Sz , z. Also we denote
by β = d(Sz, z). Obviously, we have β > 0.
Therefore we have,

d(Sun,Sun+1)→ 0, d(SSun,SSun+1)→ 0, d(Sun,SSun)→ β,

Therefore, ν2 ∈ N such that

d(Sun,Sun+1) <
β

2
, d(SSun,SSun+1) <

β

2
, d(Sun,SSun) >

β

2
for all n > ν2.

Then

d(Sun,Tun)
2

=
d(Sun,Sun+1)

2
<
β

4
< d(Sun,SSun).

So, by (1) we obtain that

d(Tun,TSun) < max{d(Sun,SSun),
1
2

(d(Sun,Tun) + d(SSun,TSun))}

d(Sun+1,SSun+1) < max{d(Sun,SSun),
1
2

(d(Sun,Sun+1) + d(SSun,SSun+1))}

Since

1
2

(d(Sun,Sun+1) + d(SSun,SSun+1)) <
β

2
< d(Sun,SSun)

we get

d(Sun+1,SSun+1) < d(Sun,SSun), for all n > ν2.

This implies that {p(Sun,SSun+1)} is strictly decreasing for large n ∈ N and

d(Sun,SSun) > β for n ≥ ν2.

Then we can take j ∈ N such that j ≥ ν2 and d(Su j,SSu j) < β + δ(β).
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Then

d(Su j,Tu j) = d(Su j,Su j+1) <
β

2
< 2d(Su j,SSu j).

That is, 1
2 d(Su j,Tu j) ≤ d(Su j,SSu j)

and

d(Su j+1,SSu j+1) = max{d(Su j,SSu j),
1
2

(d(Su j,Tu j) + d(SSu j,TSu j))} < β + δ(β). (8)

Therefore, from (2) we have,

d(Tu j,TSu j) ≤ β (9)

Since, {T,S} is compatible and Sun → z and Tun → z as n→∞, thus for ν3 ∈ N

d(STu j,TSu j) ≤ β for all j ≥ ν3.

Choose ν∗ = max{ν2, ν3}. Thus for all j ≥ ν∗, we get

d(Su j+1,SSu j+1) = d(Tu j,STu j)
≤ d(Tu j,TSu j) + d(STu j,TSu j)
≤ 2β

which contradicts (8). Thus we obtain that Sz = z. Let us prove Tz = z. If there exist ν ∈ N such that
Suν = Suν+1 then Suν = Tuν and by construction of I we obtain uν = uν+1.
Hence un = uν for all n ≥ ν. Since Sun → z we have Sun = z for n ≥ ν and then

Tz = TSuν = STuν = SSuν+1 = Sz = z.

In the other case, we have

Sun , Sun+1 for all n ∈ N.

So

Sun , Tun for n ∈ N.

If

d(Sun,Sun+1) ≥ 2d(Sun, z)

and

d(Sun+1,Sun+2) ≥ 2d(Sun+1, z),

then we have by (3)

d(Sun,Sun+1) ≤ d(Sun, z) + d(Sun+1, z)
≤ d(Sun, z) + d(Sun+1, z)

≤
1
2

(d(Sun,Sun+1) + d(Sun+1,Sun+2))

< d(Sun,Sun+1)
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This is a contradiction. Therefore we have
either

d(Sun,Sun+1) < 2d(Sun, z)

or

d(Sun+1,Sun+2) < 2d(Sun+1, z) for n ∈ N.

Then from (1)
either

d(Tun,Tz) < max{d(Sun,Sz),
1
2

(d(Sun,Tun) + d(Sz,Tz))}

or

d(Tun+1,Tz) < max{d(Sun+1,Sz),
1
2

(d(Sun+1,Tun+1) + d(Sz,Tz))}

holds for n ∈ N. Therefore, there exist a subsequence {n j} of {n} such that

d(Tun j ,Tz) < max{d(Sun j ,Sz),
1
2

(d(Sun j ,Tun j ) + d(Sz,Tz))}

holds for j ∈ N.
Since Tun j = Sun j+1 and Sun → z we obtain that

d(z,Tz) ≤ max{d(z,Sz),
1
2

(d(z, z) + d(Sz,Tz))}

=
1
2

d(z,Tz) [since z = Sz].

which implies that, Tz = z.
Hence in all cases, we have shown z is a common fixed point of S and T.
We suppose that y is another common fixed point of S and T. Since

1
2

d(Sz,Tz) < d(z, y) = d(Sz,Sy)

we have by (1)

d(z, y) = d(Tz,Ty) < max{d(Sz,Sy),
1
2

(d(Sz,Tz) + d(Sy,Ty))}

= d(Sz,Sy)
= d(z, y)

This is a contradiction. So the common fixed point is unique.

Example 3.2. Let X = {0, 1, 2, 3, 4............}, and

d(x, y) = x + y + 4 when x , y for all x, y ∈ X;
d(x, y) = 0 when x = y.

Therefore (X, d) be a complete metric space.
Define two functions S, T on X as follows:

Sx = 2x
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Tx =

2[ x
20 ], if 0 ≤ x < 60;

0, if 60 ≤ x.

where [x] is the greatest integer not greater than x. It is clear that T0 = 0 = S0, otherwise Sx , Tx for all x ∈ X. We
can define a mapping I on X by Ix = [ x

20 ] if 0 ≤ x < 60 and Ix = 0 if x ≥ 60, where [x] is the greatest integer not
greater than x.
Case I.
Let 0 ≤ x < 60 and y ∈ X.

1
2

d(Sx,Tx) =
1
2

(2x + 2[
x
20

] + 4)

1
2

d(Sx,Tx) =


x + 0 + 2 = x + 2, if 0 ≤ x < 20;
x + 1 + 2 = x + 3, if 20 ≤ x < 40;
x + 2 + 2 = x + 4, if 40 ≤ x < 60.

Therefore,

1
2

d(Sx,Tx) < d(Sx,Sy).

And

max{d(Sx,Sy),
1
2

(d(Sx,Tx)+d(Sy,Ty))} = max{d(Sx,Sy),
1
2

(d(Sx,Tx) + d(Sy,Ty))}

= max{2x + 2y + 4,
1
2

(2x + [
x
20

] + 4 + 2y + [
y

20
] + 4)

= 2x + 2y + 4
= d(Sx,Sy).

For ε > 0, there exist δ(ε) > 0 such that,
max{d(Sx,Sy), 1

2 (d(Sx,Tx) + d(Sy,Ty))} < ε + δ(ε) implies d(Tx,Ty) = 0 < ε.
Hence the result is true for 0 ≤ x < 60 and y ∈ X.
Case II. Let 60 ≤ x and y ∈ X.
In this case Tx = 0, the result is obvious.
0 is the unique common fixed point of S and T.

Result in partial metric space.

Lemma 3.3. Let (X, p) be a partial metric space, T a self map on X, d the constructed metric in Proposition 2.5 and
x, y ∈ X. Then
max{d(Sx,Sy), 1

2 (d(Sx,Tx) + d(Sy,Ty))} = max{p(Sx,Sy), 1
2 (p(Sx,Tx) + p(Sy,Ty))} for all x, y ∈ X with x , y.

Proof. The proof of the lemma is almost identical with that of Lemma 2.2 in [10]. We do not give the details
of proof here. Instead, we refer it to [10].

Theorem 3.4. Let (X, p) be a complete partial metric space. Let S be a continuous mappings on X, and T be another
mapping on X such that {T,S} is partial compatible and T(X) ⊂ S(X).
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Also let for all x, y ∈ X and for any ε > 0, there exist δ(ε) > 0 such that

(i)
1
2

p(Sx,Tx) < p(Sx,Sy)⇒ p(Tx,Ty) < max{p(Sx,Sy),
1
2

(p(Sx,Tx) + p(Sy,Ty))};

(ii)
1
2

p(Sx,Tx) < p(Sx,Sy) and max{p(Sx,Sy),
1
2

(p(Sx,Tx) + p(Sy,Ty))} < ε + δ(ε)

⇒ p(Tx,Ty) ≤ ε.

Then there exist a unique common fixed point of S and T.

Proof. By using Proposition 2.5, (X, d) is a complete metric space, where d is the constructed metric.
By Lemma 3.3, we have

max{p(Sx,Sy),
1
2

(d(Sx,Tx) + d(Sy,Ty))} = max{p(Sx,Sy),
1
2

(p(Sx,Tx) + p(Sy,Ty))}.

Therefore, for all x, y ∈ X with x , y we have,

1
2

p(Sx,Tx) =
1
2

d(Sx,Tx) < d(Sx,Sy) = p(Sx,Sy).

For any ε > 0, there exist δ(ε) > 0 such that

1
2

p(Sx,Tx) =
1
2

d(Sx,Tx) < d(Sx,Sy) = p(Sx,Sy)

and

max{p(Sx,Sy),
1
2

(p(Sx,Tx) + p(Sy,Ty))} = max{d(Sx,Sy),
1
2

(d(Sx,Tx) + d(Sy,Ty))}

< ε + δ(ε)

⇒ d(Tx,Ty) = p(Tx,Ty) ≤ ε.

Then, by using Theorem3.1, S,T have unique common fixed point.

Example 3.5. Let

X = [0, 2] p(x, y) = max{x, y} for all x ∈ X.

Therefore (X, p) be a complete partial metric space.
Define two functions S, T as follows:

Sx =

2x, if x ∈ [0, 1];
3 − x, if x ∈ [1, 2].

Tx =

0, if 0 ≤ x < 1;
1
x , if 1 ≤ x ≤ 2.
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It is clear that T0 = 0 = S0, otherwise Sx , Tx for all x ∈ X.
Case I.
Let 0 ≤ x < 1. Then

1
2

p(Sx,Tx) =
1
2

p(2x, 0) = x < max{2x, 2y} = p(Sx,Sy).

Therefore,

max{p(Sx,Sy),
1
2

(p(Sx,Tx) + p(Sy,Ty))} = max{p(2x, 2y),
1
2

(p(2x, 0) + p(2y, 0))}

= max{max{2x, 2y},
1
2

(2x + 2y)}

= max{2x, 2y}. (10)

For ε > 0, there exist δ(ε) > 0 such that
max{p(Sx,Sy), 1

2 (p(Sx,Tx) + p(Sy,Ty))} < ε + δ(ε) implies p(Tx,Ty) = 0 < ε.
Hence the result is true for 0 ≤ x < 1.
Case II. Let 1 ≤ x ≤ 2.

1
2 p(Sx,Tx) = 1

2 (3 − x) < max{3 − x, 3 − y} = p(Sx,Sy).
Now,

max{p(Sx,Sy),
1
2

(p(Sx,Tx) + p(Sy,Ty))} = max{max{3 − x, 3 − y},
1
2

(3 − x + 3 − y)}

= max{3 − x, 3 − y}. (11)

We also have p(Tx,Ty) = max{ 1x ,
1
y }. (12)

Now for the given ε > 0, there exist δ(ε) > 0 such that

max{p(Sx,Sy),
1
2

(p(Sx,Tx) + p(Sy,Ty))} < ε + δ(ε).

Using (11), (12) and the above inequality implies p(Tx,Ty) < ε.
Hence the result satisfied for 1 ≤ x ≤ 2.
0 is the unique common fixed point of S and T.
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[27] B. Samet, M. Rajović, R. Lazović, R. Stojiljković, Common fixed-point results for nonlinear contractions in ordered partial metric

spaces, Fixed Point Theory and Applications 2011 (1) (2011) 1–14.
[28] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (5)

(2008) 1861–1869.
[29] T. Suzuki, M. Kikkawa, Some remarks on a recent generalization of the Banach contraction principle, in: Proceedings of the 8th

International Conference on Fixed Point Theory and Its Applications, 2007, pp. 751–761.
[30] P. Subrahmanyam, Remarks on some fixed point theorems related to Banachs contraction principle, J. Math. Phys. Sci. 8 (1974)

445–457.
[31] J. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory, MIT Press, Cambridge, Mass.,

1977.
[32] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. General Topology 6(2) (2005) 229–240.
[33] T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math. 23 (1972) 292–298.


